Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Social media feed ranking algorithms fail when they too narrowly focus on engagement as their objective. The literature has asserted a wide variety of values that these algorithms should account for as well -- ranging from well-being to productive discourse -- far more than can be encapsulated by a single topic or theory. In response, we present a library of values for social media algorithms: a pluralistic set of 78 values as articulated across the literature, implemented into LLM-powered content classifiers that can be installed individually or in combination for real-time re-ranking of social media feeds. We investigate this approach by developing a browser extension, Alexandria, that re-ranks the X/Twitter feed in real time based on the user's desired values. Through two user studies, both qualitative (N=12) and quantitative (N=257), we found that diverse user needs require a large library of values, enabling more nuanced preferences and greater user control. With this work, we argue that the values criticized as missing from social media ranking algorithms can be operationalized and deployed today through end-user tools.more » « lessFree, publicly-accessible full text available May 16, 2026
-
Current dataset collection methods typically scrape large amounts of data from the web. While this technique is extremely scalable, data collected in this way tends to reinforce stereotypical biases, can contain personally identifiable information, and typically originates from Europe and North America. In this work, we rethink the dataset collection paradigm and introduce GeoDE , a geographically diverse dataset with 61,940 images from 40 classes and 6 world regions, with no personally identifiable information, collected by soliciting images from people around the world. We analyse GeoDE to understand differences in images collected in this manner compared to web-scraping. We demonstrate its use as both an evaluation and training dataset, allowing us to highlight and begin to mitigate the shortcomings in current models, despite GeoDE’s relatively small size. We release the full dataset and code at https://geodiverse-data-collection.cs.princeton.edu/more » « less
An official website of the United States government

Full Text Available